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OVERVIEW

▪ Sorting is one of the oldest and most studied areas of 
computer science

▪ Problem is to take in unsorted data in an array or a file

▪ Rearrange data so it is in ascending/descending order 
based on value of selected fields

▪ Store sorted data in an output array or file

• Key issues to consider

▪ How hard is the algorithm to implement?

▪ How much CPU time will the algorithm take?

▪ How much data storage will be needed?

▪ Will this algorithm work for all types of data or orderings?
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OVERVIEW

• Objectives of this lesson:

• Learn about algorithm analysis

• How to estimate the speed of an algorithm

• Examination of code, solving recurrence relationships

• Learn about best case, worst case, and average case

• Learn seven classic sorting algorithms

• How these classic algorithms work

• How to implement them

• Perform speed analysis
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OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…
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OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…
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Slow but simple to implement
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OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort
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OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…
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Very fast but only work on 

some types of data
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OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…
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See wikipedia for the history of 

sorting and many examples
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ALGORITHM ANALYSIS

• To compare two algorithms it is helpful to know how many 

instructions are executed to process N data values

• For example, to calculate sum of N integers we could use:

int sum=0;

for (int i=0; i<N; i++)

sum += data[i];

• Here the loop is executed N times

• This is an O(N) algorithm
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ALGORITHM ANALYSIS

• Similarly if we wanted to print the product of all possible 

pairs of numbers between 0 and N-1 we could use:

for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

cout << data[i] * data[j] << endl; 

• The outer loop will execute N times

• The inner loop will execute N * N = N2 times

• This is an O(N2) algorithm
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ALGORITHM ANALYSIS

• Often the loops are more complex.

int count=0;

for (int i=0; i<N; i++)

for (int j=i; j<N; j++);

count++;

• The outer loop executes N times

• How many times is the inner loop executed?
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ALGORITHM ANALYSIS

• Often the loops are more complex.

int count=0;

for (int i=0; i<N; i++)

for (int j=i; j<N; j++);

count++;

• The inner loop executes N + N-1 + ... + 2 + 1 times

• This equals (N+1) * N/2 = N2/2 + N/2

• This is less than N2 but only differs by a constant

• This is an O(N2) algorithm
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ALGORITHM ANALYSIS

• Sometimes a loop can execute less than N times

• We saw this with binary search and the power function

• Here is a similar example:

int num = N;

while (num > 0)

num = num / 2;

• If N = 2P, the loop will execute P = log2N times

• This is an O(log2N) algorithm
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ALGORITHM ANALYSIS

• Sometimes a log2N calculation is inside another loop:

for (int i=0; i<N; i++) 

{  

int num = N;

while (num > 0)

num = num / 2;

}

• The inner loop will execute N * log2 N times

• This is an O(N log2 N) algorithm
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ALGORITHM ANALYSIS

• Linear search is O(N) but binary search is O(log N)

• For N = 1000 binary search takes only 10 steps

• This is 100 times faster than linear search

• For N = 1,000,000 binary search takes only 20 steps

• This is 50,000 times faster than linear search

• Most sorting algorithms are O(N log N) or O(N2)

• The speed difference for sorting is equally dramatic

• For N = 1000, the O(N log N) sort is 100 times faster

• For N = 1,000,000 the fast sort is 50,000 times faster
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ALGORITHM ANALYSIS
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ALGORITHM ANALYSIS

CSCE 2014 - Programming Foundations II 18



SORTING 

ALGORITHMS

SELECTION SORT



SELECTION SORT

• Selection sort is a very simple sorting algorithm

• The idea is to iteratively select the smallest value from an 

unsorted array, and put this at the end of a sorted array

• Loop N times

• Select the smallest value in unsorted array

• Mark this value as "taken” in the unsorted array

• Store smallest value at end of sorted array

• When this loop finishes, the unsorted array will be empty, 

and the sorted array will have N values in ascending order
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SELECTION SORT
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Move the smallest value
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SELECTION SORT
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Move second smallest value
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SELECTION SORT
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Move last value
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SELECTION SORT
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SELECTION SORT

• One of the most expensive steps in selection sort is 

finding the next smallest value in the unsorted array

• First we must find the location of the first “untaken” value

• Then we have to loop over the rest of the array to see if 

any other “untaken” value is smaller

• Since the data array is N long this search takes N steps

• This search loop is inside a loop that executes N times

• Hence selection sort is an O(N2) algorithm

• In practice, using two arrays is inefficient, so most 

implementations use one array and move data around
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SELECTION SORT

CSCE 2014 - Programming Foundations II

In each pass of this algorithm we 

swap the smallest value in the 

unsorted part of array with 

leftmost unsorted value and 

increase the size of sorted part
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SELECTION SORT
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In the second pass we find and 

swap the second smallest value
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SELECTION SORT
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Then we swap the third smallest 

value in into its correct location
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SELECTION SORT
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In some cases the smallest 

value does not need to be 

swapped because it is already 

in the correct location
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SELECTION SORT

CSCE 2014 - Programming Foundations II

The selection sort loop ends 

after N passes over the data
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SELECTION SORT

• The selection sort algorithm can be adapted to search for 

the next largest value in the unsorted part of the array

• In this case, the unsorted portion is on the left side and the 

sorted portion is on the right side of the array 

• Questions:  

• Do you think the selection sort algorithm is faster if the 

input data is already in sorted order?

• Do you think the selection sort algorithm is slower if the 

input data is in reverse sorted order?

• Do you think selection sort is always O(N2)?
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SELECTION SORT

• The selection sort algorithm can be adapted to search for 

the next largest value in the unsorted part of the array

• In this case, the unsorted portion is on the left side and the 

sorted portion is on the right side of the array 

• Questions:  

• Do you think the selection sort algorithm is faster if the 

input data is already in sorted order?   NO

• Do you think the selection sort algorithm is slower if the 

input data is in reverse sorted order?   NO

• Do you think selection sort is always O(N2)?  YES
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SELECTION SORT

void selection_sort(int data[], int low, int high)

{

// Loop over input array N times

for (int last = high; last > low; last--)

{

// Find index of largest value in unsorted array

int largest = low;

for (int index = low + 1; index <= last; index++)

if (data[index] > data[largest])

largest = index;

// Swap with last element in unsorted array

int temp = data[last];

data[last] = data[largest];

data[largest] = temp;

}

}

CSCE 2014 - Programming Foundations II

Notice that this sorting function 

has two nested for loops
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SELECTION SORT

Experimental results:

Enter number of data values:100

CPU time = 5.5e-05 sec

Enter number of data values:1000

CPU time = 0.004088 sec

Enter number of data values:10000

CPU time = 0.24972 sec

Enter number of data values:100000

CPU time = 14.2292 sec
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BUBBLE SORT

• Bubble sort is a widely known sorting algorithm because it 

is simple to explain and implement

• Unfortunately, this simplicity comes at a cost – speed

• The idea is to iteratively scan the data array from left to 

right, and swap any adjacent values that are out of order

• Each pass over the array “bubbles” the largest data value 

to the right, and smaller data values shift one to the left

• After N iterations over the input array, the data values will 

be in sorted order
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BUBBLE SORT
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BUBBLE SORT
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BUBBLE SORT
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BUBBLE SORT
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BUBBLE SORT

void bubble_sort(int data[], int low, int high)

{

// Loop over array N times

for (int count = low; count < high; count++)

{

// Loop over N elements in array 

for (int index = low; index < high; index++)

{

// Swap two data values if out of order

if (data[index] > data[index + 1])

{

int temp = data[index];

data[index] = data[index + 1];

data[index + 1] = temp;

}

}

}

}CSCE 2014 - Programming Foundations II

Notice that this sorting function 

has two nested for loops
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BUBBLE SORT

• How long does bubble sort take to sort an array?

• There are N passes over the array

• For each pass N-1 pairs of adjacent values are compared

• In total there are N * (N-1) = N2 – N comparisons

• Hence this is an O(N2) sorting algorithm

• What happens if the input array is already sorted?

• The current algorithm will do N passes over the data

• No data values will be swapped in each pass

• This is a massive waste of CPU time
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BUBBLE SORT

• To improve bubble sort we can stop when no swaps occur

• Initialize swap counter to zero before each pass

• When swap counter is still zero after the comparison pass 

the array is in sorted order and we can stop looping 

• In the best case, when the data is already sorted, this 

improved bubble sort is only O(N) steps 

• This algorithm will still be O(N2) on average, but with a 

smaller run time constant than the basic bubble sort
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BUBBLE SORT

void bubble_sort(int data[], int low, int high)

{

// Bubble largest value to the right N times

int pass = 1;

int exchange = 1;

int count = high - low + 1;

while ((pass < count) && (exchange > 0))

{

// Scan unsorted part of data array

exchange = 0;

for (int index = low; index <= high - pass; index++)

...

CSCE 2014 - Programming Foundations II

By checking the number of 

exchanges, we can stop the 

outer loop when data is sorted
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BUBBLE SORT

{

// Swap two data values if out of order

if (data[index] > data[index + 1])

{

int temp = data[index];

data[index] = data[index + 1];

data[index + 1] = temp;

exchange++;

}

}

pass++;

}

}
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BUBBLE SORT

Experimental results with basic bubble sort:

Enter number of data values:100

CPU time = 0.000144 sec

Enter number of data values:1000

CPU time = 0.009901 sec

Enter number of data values:10000

CPU time = 0.503489 sec

Enter number of data values:100000

CPU time = 43.8939 sec
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BUBBLE SORT

Experimental results with improved bubble sort:

Enter number of data values:100

CPU time = 3.5e-05 sec

Enter number of data values:1000

CPU time = 0.004836 sec

Enter number of data values:10000

CPU time = 0.402202 sec

Enter number of data values:100000

CPU time = 30.8026 sec

CSCE 2014 - Programming Foundations II

Although this is much 

faster than the basic 

bubble sort algorithm it 

is still very slow for 

large values of N
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INSERTION SORT

▪ Insertion sort is another simple (but slow) algorithm

▪ The idea is to gradually create a sorted array by inserting

unsorted data values one-by-one into a sorted array

▪ Loop N times

▪ Look at the next data value in the unsorted array

▪ Move sorted data to make room for this value

▪ Insert data value into correct location in sorted array

• When this loop finishes, the unsorted array will be empty, 

and the sorted array will have N values in ascending order
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INSERTION SORT

▪ The tricky part of the insertion sort algorithm is making 

room for the new data

▪ Set array index to current length of sorted array

▪ While data[index-1] greater than insert_value

▪ Shift data using “data[index] = data[index-1]”

▪ Decrement index using “index=index-1”

▪ Store insert_value in data[index]

▪ This process is the most expensive step in insertion sort
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INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5
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INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4
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INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3
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INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3

1 1 3 4 5 9 shift 3, index = 2
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INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3

1 1 3 4 5 9 shift 3, index = 2

1 1 2 3 4 5 9 insert 2 at index 2
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6

1 1 2 3 4 5 9 - shift 3 4 5 9, insert 2 - - - - - - - 6
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INSERTION SORT

▪ Example inserting N unsorted data into sorted array 

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6

1 1 2 3 4 5 9 - shift 3 4 5 9, insert 2 - - - - - - - 6

1 1 2 3 4 5 6 9 shift 9, insert 6 - - - - - - - -
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6 Unsorted data
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9

1 1 2 3 4 5 9 6 shift 3 4 5 9, insert 2
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INSERTION SORT

▪ Insertion sort is normally implemented with one array and 

we keep track of which half is sorted (white and green) 

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9

1 1 2 3 4 5 9 6 shift 3 4 5 9, insert 2

1 1 2 3 4 5 6 9 shift 9, insert 6

73CSCE 2014 - Programming Foundations II



INSERTION SORT

▪ Notice that in the previous example

▪ Some insertions caused a lot of data shifting 

▪ Other insertions caused no data shifting

▪ On average we can expect half the sorted data to shift

▪ The data insertion loop iterates N times

▪ On iteration K we shift K/2 values on average

▪ Total data shifts = (0+1+2+3+…+N-1)/2 

= (N * (N-1)/2)/2

= (N2 – N)/2

▪ Hence insertion sort is an O(N2) algorithm on average
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INSERTION SORT

▪ If the “unsorted data” is in reverse sorted order, we must 

shift all the data for each insert

▪ This is the worst case for insertion sort

▪ Total data shifts = (N2 – N)

▪ Hence algorithm is O(N2) in worst case

▪ If the “unsorted data” is in sorted order, we do no shifting

▪ This is the best case for insertion sort

▪ Total data shifts = 0 for N insertions

▪ Hence algorithm is O(N) in best case
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INSERTION SORT

void insertion_sort(int data[], int low, int high)

{

// Insert each element of unsorted list into sorted list

for (int unsorted = low + 1; unsorted <= high; unsorted++)

{

// Select unsorted value to be inserted

int value = data[unsorted];

int posn = unsorted;

// Make room for new data value

while ((posn > 0) && (data[posn - 1] > value))

{ data[posn] = data[posn - 1]; posn--; }

// Put new value into array

data[posn] = value;

}

}

Notice that this sorting function 

has two nested loops
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INSERTION SORT

Experimental results:

Enter number of data values: 100

CPU time = 3.6e-05 sec

Enter number of data values: 1000

CPU time = 0.002247 sec

Enter number of data values: 10000

CPU time = 0.150965 sec

Enter number of data values: 100000

CPU time = 8.23081 sec
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INSERTION SORT

Experimental results:

Enter number of data values: 100

CPU time = 3.6e-05 sec

Enter number of data values: 1000

CPU time = 0.002247 sec

Enter number of data values: 10000

CPU time = 0.150965 sec

Enter number of data values: 100000

CPU time = 8.23081 sec
This is faster than 

selection sort (14 sec) 

or bubble sort (30 sec)
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INSERTION SORT

▪ Sometimes the data insertion phase is implemented with 

an element-by-element swap that is similar to bubble sort.

▪ Instead of “bubbling” the largest value to right, we “bubble” 

the inserted value to the left until it is in correct location

▪ This approach requires slightly more CPU time because 

we keep moving the inserted value over and over

▪ This approach is illustrated in the example below

▪ We use one index for location of data being inserted

▪ We use second index to keep track of bubble location
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INSERTION SORT

80

7 2 3 4 6 1 8 5 9 10

Sorted 

portion

Next thing to insert

Unsorted portion
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INSERTION SORT

81

7 2 3 4 6 1 8 5 9 10

Sorted portion

Next thing to insert

Unsorted portion
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INSERTION SORT

82

2 7 3 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

83

2 7 3 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

84

2 3 7 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

85

2 3 7 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

86

2 3 4 7 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

87

2 3 4 7 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

88

2 3 4 6 7 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II



INSERTION SORT

89

2 3 4 6 7 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

90

2 3 4 6 1 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

91

2 3 4 1 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

92

2 3 1 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

93

2 1 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

94

1 2 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

95

1 2 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

96

1 2 3 4 6 7 8 5 9 10

Sorted portion
Unsorted portion

Next thing to insert
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INSERTION SORT

97

1 2 3 4 6 7 5 8 9 10

Sorted portion
Unsorted portion

Next thing to insert
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INSERTION SORT

98

1 2 3 4 6 5 7 8 9 10

Sorted portion
Unsorted portion

Next thing to insert
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INSERTION SORT

99

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted portion

Next thing to insert
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INSERTION SORT

100

1 2 3 4 5 6 7 8 9 10

Sorted portion Unsorted portion

Next thing to insert
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INSERTION SORT

101

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted 

portion

Next thing to insert
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INSERTION SORT

102

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted 

portion

CSCE 2014 - Programming Foundations II



SORTING 

ALGORITHMS

MERGE SORT



MERGE SORT

▪ Merge sort is a very clever “divide and conquer” sorting 

algorithm that is much faster than the previous methods

▪ The key idea is that sorting N data values can be broken 

into three steps

▪ Divide the input data into two parts that are N/2 long

▪ Sort the two arrays of N/2 values

▪ Merge the two arrays of N/2 values to get N sorted values

▪ First we demonstrate the merging step with the following:

1 3 4 7 8 2 5 6 9 10
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MERGE SORT

▪ Start with two sorted arrays, start two indices at smallest 

values in each array, copy smallest value to merged array

1 3 4 7 8 2 5 6 9 10

1 is smaller

1
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

2 is smaller

1 2
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

3 is smaller

1 2 3
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

4 is smaller

1 2 3 4

10

8
CSCE 2014 - Programming Foundations II



MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

5 is smaller

1 2 3 4 5

10

9
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

6 is smaller

1 2 3 4 5 6
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

7 is smaller

1 2 3 4 5 6 7
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MERGE SORT

▪ Advance the array index on one array, select smallest  

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

8 is smaller

1 2 3 4 5 6 7 8
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MERGE SORT

▪ Index has reached end of one array, copy remaining 

values from second array into merged array

1 3 4 7 8 2 5 6 9 10

copy the 9

1 2 3 4 5 6 7 8 9

113CSCE 2014 - Programming Foundations II



MERGE SORT

▪ Index has reached end of one array, copy remaining 

values from second array into merged array

1 3 4 7 8 2 5 6 9 10

copy the 10

1 2 3 4 5 6 7 8 9 10
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MERGE SORT

▪ How are we going to sort the two arrays of N/2 values?

▪ Divide both arrays of N/2 values into arrays of N/4 values

▪ Sort the arrays of N/4 values

▪ Merge arrays of N/4 values to create array of N/2 values

▪ How are we going to sort the two arrays of N/4 values?

▪ Divide both arrays of N/4 values into arrays of N/8 values

▪ Sort the arrays of N/8 values

▪ Merge arrays of N/8 values to create array of N/4 values

▪ We continue this recursive “divide and conquer” process 
until the array being divided is only one element long
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MERGE SORT

Start with an unsorted array of length N=8

3 1 4 1 5 9 2 6
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MERGE SORT

Split into 2 arrays of length N/2=4

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6
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MERGE SORT

Split into 4 arrays of length N/4=2

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6
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MERGE SORT

Split into N=8 arrays of length 1

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

119CSCE 2014 - Programming Foundations II



MERGE SORT

Start merging phase with N=8 arrays of length 1

3 1 4 1 5 9 2 6
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MERGE SORT

Merge to create N/2=4 sorted arrays of length 2

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6
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MERGE SORT

Merge to create N/4=2 sorted arrays of length 4

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6
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MERGE SORT

Merge to create N/8=1 sorted array of length 8

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6
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MERGE SORT

void merge_sort(int data[], int low, int high)

{

// Check terminating condition

int count = high - low + 1;

if (count > 1)

{

// Divide the array and sort both halves

int mid = (low + high) / 2;

merge_sort(data, low, mid);

merge_sort(data, mid + 1, high);

// Merge sorted arrays

...

The terminating condition is 

when the array is <= 1 long
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MERGE SORT

void merge_sort(int data[], int low, int high)

{

// Check terminating condition

int count = high - low + 1;

if (count > 1)

{

// Divide the array and sort both halves

int mid = (low + high) / 2;

merge_sort(data, low, mid);

merge_sort(data, mid + 1, high);

// Merge sorted arrays

...

We make two recursive calls 

to sort the left and right 

halves of the input array
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MERGE SORT
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S(0,7)

S(0,3)

S(4,7)

S(2,3)

S(0,1)

S(6,7)

S(4,5)

Box method trace for 

sorting an array of 8 items



MERGE SORT

// Create temporary array for merged data

int *copy = new int[range];

// Initialize array indices

int index1 = low;

int index2 = mid + 1;

int index = 0;

// Merge smallest data elements into copy array

while (index1 <= mid && index2 <= high)

{

if (data[index1] <= data[index2])

copy[index++] = data[index1++];

else

copy[index++] = data[index2++];

}

...

Next, we merge the two sorted 

arrays into a temporary array
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MERGE SORT

...

// Copy any remaining entries from the first half

while (index1 <= mid)

copy[index++] = data[index1++];

// Copy any remaining entries from the second half

while (index2 <= high)

copy[index++] = data[index2++];

// Copy data back from the temporary array

for (index = 0; index < range; index++)

data[low + index] = copy[index];

delete[]copy;

}

}

Finally, we copy temporary 

array back into original array
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MERGE SORT

Experimental results:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.000439 sec

Enter number of data values: 10000

CPU time = 0.004654 sec

Enter number of data values: 100000

CPU time = 0.046654 sec
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MERGE SORT

Experimental results:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.000439 sec

Enter number of data values: 10000

CPU time = 0.004654 sec

Enter number of data values: 100000

CPU time = 0.046654 sec

This is much faster than  

insertion sort (8 sec) 

selection sort (14 sec) 

or bubble sort (30 sec)
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MERGE SORT ANALYSIS

To merge N=8 values takes log2N=3 levels of merging

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

3
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MERGE SORT ANALYSIS

Each merge step processes all N values

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

N

133CSCE 2014 - Programming Foundations II



MERGE SORT ANALYSIS

Total work merging sorted arrays is O(N log2N)

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

3

N
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MERGE SORT ANALYSIS

Similarly, total work splitting unsorted arrays is O(N log2N) 

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3

N
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MERGE SORT ANALYSIS

▪ The slitting and merging phases are both O(N log2N) 

▪ Hence, the merge sort algorithm is O(N log2N)

▪ This is a tremendous speed improvement over O(N2)

O(N) O(N log2N) O(N2)

10 33 100

100 664 10,000

1,000 9,966 1,000,000

10,000 132,877 100,000,000

100,000 1,660,964 10,000,000,000

1,000,000 19,931,569 1,000,000,000,000
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MERGE SORT ANALYSIS

▪ Let S(N) be amount of work to sort N values

▪ S(1) = 1 - a single data value

▪ S(N) = 2 * S(N/2) + N - 2 recursive sorts and merge

▪ Substituting the recurrence relationship into itself

▪ S(N) = 2 * S(N/2) + N

▪ S(N) = 2 * (2 * S(N/4) + N/2) + N

▪ S(N) = 4 * S(N/4) + 2 * N 

▪ S(N) = 4 * (2 * S(N/8) + N/4) + 2 * N 

▪ S(N) = 8 * S(N/8) + 3 * N

▪ …
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MERGE SORT ANALYSIS

▪ Notice the pattern?

▪ S(N) = 2 * S(N/2)     + N

▪ S(N) = 4 * S(N/4)     + 2 * N 

▪ S(N) = 8 * S(N/8)     + 3 * N

▪ S(N) = 16 * S(N/16) + 4 * N

▪ ...

These values are 

powers of 2

138CSCE 2014 - Programming Foundations II



MERGE SORT ANALYSIS

▪ Notice the pattern?

▪ S(N) = 2 * S(N/2)     + N

▪ S(N) = 4 * S(N/4)     + 2 * N 

▪ S(N) = 8 * S(N/8)     + 3 * N

▪ S(N) = 16 * S(N/16) + 4 * N

▪ …

▪ If we let k be the power, the recurrence formula becomes

▪ S(N) = 2k * S(N/2k) + k * N

These are 

the powers 

139CSCE 2014 - Programming Foundations II



MERGE SORT ANALYSIS

▪ Assume that N = 2k where k = log2N

▪ Substituting for 2k and k in the recurrence formula we get

▪ S(N) = 2k * S(N/2k) + k * N

▪ S(N) = N * S(N/N) + log2N * N

▪ S(N) = N * S(1) + log2N * N

▪ S(N) = N * 1 + log2N * N

▪ S(N) = N + N log2N

▪ Since N is smaller than N log2N we can ignore this term

▪ Hence the merge sort algorithm is O(N log2N) 
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MERGE SORT ANALYSIS

▪ What happens if the input array is already sorted?

▪ The splitting is not affected

▪ The merging is not affected

▪ The algorithm is still O(N log2N)

▪ The number of splitting and merging steps in this 

algorithm do not depend on the data values in the array 

▪ Best case is O(N log2N) 

▪ Worst case is O(N log2N) 

▪ Average case is O(N log2N) 
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QUICKSORT

▪ Quicksort is another “divide and conquer” algorithm that 

is famous for being fast (hence the name)

▪ It was invented in 1960 by Tony Hoare

▪ The key idea is to partition the unsorted array into two 

parts, sort the two parts, and combine to get sorted result

▪ The really clever idea is to partition the data with small 

values in one part and large values in the other part

▪ This way the combine step takes no work!
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QUICKSORT

Step 1: Partition unsorted data into two parts

144

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

We put all small values 

on the left and all large 

values on the right

CSCE 2014 - Programming Foundations II



QUICKSORT

Step 2: Sort the small values on the left (recursively)

145

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3
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QUICKSORT

Step 3: Sort the large values on the right (recursively)

146

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9
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QUICKSORT

Step 4: Combine the two sorted halves (no work)

147

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9

1 1 2 3 4 5 6 9
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QUICKSORT

▪ How can we partition the input array so all small values 
are on the left and all large values are on the right?

▪ Hoare’s solution was to select a “pivot value” from array 
and use this value to decide what is “small” and “large”

▪ Simple choice is to use rightmost array location

▪ Hoare’s partition algorithm:

▪ Scan the unsorted array from left to right until we find a 
data value that is greater than the pivot

▪ Scan the unsorted array from right to left until we find a 
data value that is less than the pivot

▪ Swap these two values, repeat until the L-R and R-L scans 
cross each other in the middle of the array
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QUICKSORT

Step 1: Select rightmost array value as pivot value

149

3 1 6 1 5 9 2 4
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QUICKSORT

Step 2: Scan L-R to find value greater than pivot value

150

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4
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QUICKSORT

Step 3: Scan R-L to find value smaller than pivot value

151

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4
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QUICKSORT

Step 4: Swap the values if left value > right value

152

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4
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QUICKSORT

Repeat Step 2: Scan L-R to find value greater than pivot

153

3 1 2 1 5 9 6 4
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QUICKSORT

Repeat Step 3: Scan R-L to find value smaller than pivot

154

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4
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QUICKSORT

Repeat Step 4: Swap the values if left value > right value

155

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

Since the left value < right value 

we do NOT swap these values
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QUICKSORT

Now we have partitioned the array into two parts

156

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

All of these values are 

less than the pivot value
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QUICKSORT

Now we have partitioned the array into two parts

157

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

All of these values are 

greater than or equal 

to the pivot value
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QUICKSORT

After recursively sorting both halves the array is sorted

158

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9

No data movement is needed 

because all small values are 

already left of all large values
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QUICKSORT

void quick_sort(int data[], int low, int high)

{

// Check terminating condition

if (low < high)

{

// Partition data into two parts

int mid = 0;

partition(data, low, high, mid);

// Recursive calls to sort array

quick_sort(data, low, mid - 1);

quick_sort(data, mid + 1, high);

}

}

159

We call partition to divide the 

array into two parts
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QUICKSORT

void quick_sort(int data[], int low, int high)

{

// Check terminating condition

if (low < high)

{

// Partition data into two parts

int mid = 0;

partition(data, low, high, mid);

// Recursive calls to sort array

quick_sort(data, low, mid - 1);

quick_sort(data, mid + 1, high);

}

}

160

We make two recursive calls 

to sort the parts of array
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QUICKSORT

void partition(int data[], int low, int high, int &mid)

{

// Use data[high] for pivot value

int pivot = data[high];

// Partition array into two parts

int left = low;

int right = high;

while (left < right)

{

// Scan left to right

while ((left < right) && (data[left] < pivot)) 

left++;

161

First, we do L-R scan to 

find value >= pivot value
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QUICKSORT

... 

// Scan right to left

while ((left < right) && (data[right] >= pivot)) 

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

162

Next, we do R-L  scan to 

find value < pivot value
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QUICKSORT

... 

// Scan right to left

while ((left < right) && (data[right] >= pivot)) 

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

163

Then we swap the two 

data values
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QUICKSORT

... 

// Scan right to left

while ((left < right) && (data[right] >= pivot)) 

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

164

Finally we swap pivot 

value to middle of array
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QUICKSORT

Experimental results for random data:

Enter number of data values: 100

CPU time = 2.0e-05 sec

Enter number of data values: 1000

CPU time = 0.00025 sec

Enter number of data values: 10000

CPU time = 0.003042 sec

Enter number of data values: 100000

CPU time = 0.034606 sec
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QUICKSORT

Experimental results for random data:

Enter number of data values: 100

CPU time = 2.0e-05 sec

Enter number of data values: 1000

CPU time = 0.00025 sec

Enter number of data values: 10000

CPU time = 0.003042 sec

Enter number of data values: 100000

CPU time = 0.034606 sec

166

This is slightly faster 

than merge sort 

(0.046654 sec)
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QUICKSORT ANALYSIS

▪ The run time performance of quicksort for random data is 

very similar to the merge sort algorithm

▪ The input array is partitioned into two arrays N/2 long

▪ These arrays are partitioned into four arrays N/4 long

▪ These arrays are partitioned into eight arrays N/8 long

▪ This partitioning process stops after log2N steps

▪ Each partition step must look at N array values

▪ Hence quicksort is O(N log2N) for random data

▪ In practice quicksort is slightly faster then merge sort 

because there is less data copying and no merge step
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QUICKSORT ANALYSIS

▪ Let S(N) be amount of work to sort N random values

▪ S(1) = 1

▪ S(N) = 2 * S(N/2) + N

▪ …

▪ S(N) = 2k * S(N/2k) + k * N

▪

▪ Assume that N = 2k where k = log2N

▪ S(N) = N * S(N/N) + log2N * N

▪ S(N) = N * S(1) + log2N * N

▪ S(N) = N log2N + N

▪ Hence quicksort is O(N log2N) for random data
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QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not 

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

170

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

> pivot
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QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not 

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

171

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

< pivot
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QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not 

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

172

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

Swap
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QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not 

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

173

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

The left is 6 long
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QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not 

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

174

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

The right is 2 long

CSCE 2014 - Programming Foundations II



QUICKSORT ANALYSIS

▪ The worst case for pivot selection happens when the data 

is already in sorted order

▪ The rightmost value in array will be larger than all others

▪ 1st partition will produce arrays N-1 long and 1 long

▪ 2nd partition will produce arrays N-2 long and 1 long

▪ 3rd partition will produce arrays N-3 long and 1 long

▪ This partitioning stops after N steps

▪ Each partition step looks at N/2 values on average

▪ Hence the worst case for quicksort is an O(N2)
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QUICKSORT ANALYSIS

▪ Let S(N) be amount of work to sort N sorted values

▪ S(1) = 1

▪ S(N) = S(N-1) + S(1) + N

▪ S(N) = S(N-2) + 2 * S(1) + N + N-1

▪ S(N) = S(N-k) + k * S(1) + N + N-1 + … + N-k-1

▪ The partitioning stops when k = N-1 

▪ S(N) = S(1) + (N-1) * S(1) + N + N-1 + … + 1

▪ S(N) = 1 + (N-1) + (N+1)*N/2

▪ S(N) = N2/2 + 3*N/2

▪ Hence the worst case for quicksort is O(N2)
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QUICKSORT

Experimental results for sorted data:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.003985 sec

Enter number of data values: 10000

CPU time = 0.22371 sec

Enter number of data values: 100000

CPU time = 13.6309 sec

177

This is slower than 

insertion sort (8 sec) 

and similar to selection 

sort (14 sec) 
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QUICKSORT ANALYSIS

▪ The selection of quicksort pivots has been widely studied

▪ Robert Sedgewick did his PhD dissertation on this topic

▪ He has also written several excellent algorithms books

▪ Common pivot choices:

▪ Selecting the last value as pivot is bad for sorted data

▪ Selecting the first value as pivot is bad for sorted data

▪ Selecting the middle value as pivot is good for sorted data

▪ Selecting the median of first, middle, last values is the 

most expensive choice, but also the most robust 

▪ See sort.cpp on class website for implementation details

178CSCE 2014 - Programming Foundations II



SORTING 

ALGORITHMS

COUNTING SORT



COUNTING SORT

▪ All of the sorting techniques we have discussed so far are 

general purpose “comparison based” algorithms

▪ These algorithms will work for any data type that can be 

compared to each other (floats, integers, chars, strings)

▪ We rearrange data in the array based on comparisons

▪ Counting sort is a “non-comparison based” algorithm that 

was invented in 1954 by Harold Seward

▪ Instead of comparing elements, we simply count them and 

use this information to output sorted data

▪ This approach works for integers and characters but it 

does not work for floats or strings
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COUNTING SORT

▪ The counting sort algorithm has the following steps

▪ Create an array to contain the count information

▪ Initialize this count array to all zeros

▪ Loop over the data array and increment the counters

▪ Loop over the count array to create sorted output

▪ We demonstrate counting sort by sorting 30 integers 

between the values of 0 and 9

▪ We use the first 30 digits of PI just for fun
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COUNTING SORT

The unsorted data is shown below

182

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9
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COUNTING SORT

First, we create and initialize the counting array to zeros

183

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

184

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

185

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 0 0 0 0 0

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

186

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 0 0 0 0 0

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

187

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 1 0 0 0 0

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

188

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 1 0 0 0 1

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

189

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 1 0 0 0 1

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

190

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 1 1 0 0 1

index

count
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COUNTING SORT

Next we loop over the digit array and increment counters

191

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 2 1 0 0 1

index

count
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COUNTING SORT

Next, we loop over the digit array and increment counters

192

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 1 1 2 1 0 0 1

index

count
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COUNTING SORT

After 10 digits we have the following counts

193

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 1 1 3 1 0 0 1

index

count
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COUNTING SORT

After 20 digits we have the following counts

194

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 2 3 2 3 2 1 2 3

index

count
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COUNTING SORT

After 30 digits we have the following counts

195

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II



COUNTING SORT

Now we can create the sorted output array

196

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

First, we output zero 0’s

197

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output two 1’s

198

1 1 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output four 2’s

199

1 1 2 2 2 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output six 3’s

200

1 1 2 2 2 2 3 3 3 3

3 3 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output three 4’s

201

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output three 5’s

202

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output three 6’s

203

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output two 7’s

204

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Then we output three 8’s

205

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 8 8 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

Finally, we output four 9’s

206

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 8 8 8 9 9 9 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count
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COUNTING SORT

▪ How much work was needed for this example?

▪ Create and initialize count array (10 steps)

▪ Loop over data array to get counts (30 steps)

▪ Loop over count array to use counts (10 steps)

▪ Output sorted values in data array (30 steps)

▪ To generalize:

▪ Assume the input array is N long

▪ Assume the data has a range of M values

▪ Total work for counting sort = 2 * N + 2 * M = O(N + M)
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COUNTING SORT

▪ When should we use counting sort?

▪ When the data values can be counted (int, char) 

▪ When the value of M is small compared to N

▪ Sorting first 30 digits of PI: N=30, M=10

▪ Counting sort is excellent in this case

▪ When should we not use counting sort?

▪ When the data values can not be counted (float, string)

▪ When the value of M is large compared to N

▪ Sorting 100 UofA student IDs: N=100, M=1,000,000,000

▪ Counting sort is terrible this case
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COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

209

First we initialize the 

counting array to zeros
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COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

210

Then we loop over input array 

incrementing the counters
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COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

211

Note: we assume all data values 

are between [0..range-1] or an 

array bounds error will occur
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COUNTING SORT

...

// Generate output array

int dindex = low;

for (int cindex = 0; cindex < range; cindex++)

{

for (int index = 0; index < datacount[cindex]; index++)

data[dindex + index] = cindex;

dindex += datacount[cindex];

}

delete[]datacount;

}

212

Finally we loop over the 

count array and produce 

the sorted output array
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COUNTING SORT

Experimental results for random data:

Enter number of data values: 100

Enter range of data values: 100

CPU time = 1.8e-05 sec

Enter number of data values: 1000

Enter range of data values: 100

CPU time = 4.5e-05 sec

Enter number of data values: 10000

Enter range of data values: 100

CPU time = 0.000319 sec
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COUNTING SORT

Experimental results for random data:

Enter number of data values: 100000

Enter range of data values: 100

CPU time = 0.001492 sec

Enter number of data values: 1000000

Enter range of data values: 100

CPU time = 0.015416 sec

Enter number of data values: 1000000

Enter range of data values: 1000000

CPU time = 0.047364 sec

214

Increasing the data 

range makes counting 

sort run slower
CSCE 2014 - Programming Foundations II
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RADIX SORT

▪ Radix sort is a “non-comparison based” algorithm that was 

invented in 1887 by Herman Hollerith

▪ Hollerith used this algorithm in his mechanical tabulating 

machine to sort punched cards for the 1890 US census

▪ The algorithm was implemented in software in 1954 by 

Herman Seward (who invented counting sort in the process)

▪ This sorting algorithm works for all most common data types 

by processing values one digit or letter at a time 

▪ The algorithm works for any base (2 for binary, 10 for digits, 

26 for letters) so it is called a radix sort
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RADIX SORT

217
Replica of Hollerith’s tabulating machine with sorting box (from Wikipedia)
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RADIX SORT

218
IBM card sorting machine that uses radix sort (from Wikipedia)
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RADIX SORT

▪ The radix sort algorithm has the following steps:

▪ Assume there are N data values with D digits in base R

▪ Create R buckets (arrays or linked lists) for storing data values

▪ Perform D passes over the data array

▪ Each pass will look at one digit of the data value from least

significant digit to most significant digit

▪ Based on value of digit, move data into corresponding bucket

▪ Combine all R buckets after each pass 

▪ After D passes over the data will be in sorted order
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RADIX SORT

Example with eight 3-digit integers

220

Original 170 045 075 090 002 802 002 066
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RADIX SORT

Place data into buckets based on 1’s digit

221

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 0 bucket
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RADIX SORT

Place data into buckets based on 1’s digit

222

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 2 bucket
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RADIX SORT

Place data into buckets based on 1’s digit

223

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 5 bucket
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RADIX SORT

Place data into buckets based on 1’s digit

224

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 6 bucket
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RADIX SORT

Place data into buckets based on 10’s digit

225

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 0 bucket
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RADIX SORT

Place data into buckets based on 10’s digit

226

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 4 bucket
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RADIX SORT

Place data into buckets based on 10’s digit

227

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 6 bucket
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RADIX SORT

Place data into buckets based on 10’s digit

228

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 7 bucket
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RADIX SORT

Place data into buckets based on 10’s digit

229

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 9 bucket
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RADIX SORT

Place data into buckets based on 100’s digit

230

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 0 bucket
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RADIX SORT

Place data into buckets based on 100’s digit

231

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 1 bucket
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RADIX SORT

Place data into buckets based on 100’s digit

232

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 8 bucket
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RADIX SORT

Place data into buckets based on 100’s digit

233

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

After 3 passes the input 

data is now in sorted order
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RADIX SORT

▪ Essential implementation details: 

▪ We can implement buckets using linked lists or arrays

▪ For arrays, we must know in advance the size and staring 

point for each of the R buckets for each pass

▪ This can be calculated by one pass over the data that 

counts the number of times each digit occurs

▪ We must maintain the original ordering of data within each 

bucket by filling buckets from the right 

▪ We must make ensure that all data is D digits long by 

padding integers to left and strings to the right
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RADIX SORT

▪ How much work is done by radix sort?

▪ Assume there are N data values with D digits in base R

▪ There are D passes over the array

▪ We must move N data values in each pass

▪ Hence radix sort is O(N*D)

▪ Radix sort is fast when D is small compared to N

▪ Sorting 1000 3-digit integers

▪ Radix sort is slow when D is greater than or equal to N

▪ Sorting 3 1000-digit integers
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SUMMARY

▪ In this section, we introduced algorithm analysis for 

searching and sorting, and the differences between      

O(logN), O(N), O(N logN), and O(N2) algorithms

▪ We discussed three O(N2) sorting techniques:

▪ We described the Selection sort algorithm and its 

implementation and run time performance

▪ We described two versions of the Bubble sort algorithm 

and compared their implementations

▪ We described the Insertion sort algorithm and its 

implementation and run time performance
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SUMMARY

▪ We discussed two O(N logN) sorting methods:

▪ We described the recursive merge sort algorithm and its 

implementation and run time performance

▪ We did an analysis of merge sort and demonstrated that 

this is an O(N logN) algorithm

▪ Quicksort is a divide and conquer algorithm that is faster 

then most other sorting algorithms most of the time

▪ We did an analysis of quicksort and demonstrated that this 

algorithm is O(N logN) on average but O(N2) in worst case

▪ These sorting algorithms demonstrate that slightly more 

complex algorithms can outperform simple algorithms
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SUMMARY

▪ Finally, we described two specialized sorting algorithms

▪ Counting sort is a “non-comparison based” sort that is well 

suited for sorting large arrays of small integers

▪ Radix sort is a “non-comparison based” algorithm that 

sorts fixed size data one digit at a time using buckets

▪ These sorting algorithms have very different best case 

and worst-case behaviors so we have to be careful when 

deciding what sorting algorithm to use
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SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

240

The O(N2) algorithms have relatively slow run times, insertion 

sort is often the fastest, especially for mostly sorted data
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SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

241

The O(N logN) algorithms have similar run times, but quicksort 

is generally the fastest, except when the input data is sorted
CSCE 2014 - Programming Foundations II



SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

242

The non-comparison based algorithms can be faster than all 

other sort algorithms, but they only work for limited data types
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SUMMARY

Algorithm History

Selection Sort Unknown*

Basic Bubble Sort Unknown*

Bubble Sort Unknown*

Insertion Sort Unknown*

Merge Sort Invented 1945 by John von Neumann

Quicksort Invented 1960 by Tony Hoare

Counting Sort Invented 1954 by Harold Seward

Radix Sort Invented 1887 by Herman Hollerith

243

* Because no one wants to take credit for O(N2) sort algorithms
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