
SORTING

ALGORITHMS

OVERVIEW

OVERVIEW

▪ Sorting is one of the oldest and most studied areas of
computer science

▪ Problem is to take in unsorted data in an array or a file

▪ Rearrange data so it is in ascending/descending order
based on value of selected fields

▪ Store sorted data in an output array or file

• Key issues to consider

▪ How hard is the algorithm to implement?

▪ How much CPU time will the algorithm take?

▪ How much data storage will be needed?

▪ Will this algorithm work for all types of data or orderings?

CSCE 2014 - Programming Foundations II 2

OVERVIEW

• Objectives of this lesson:

• Learn about algorithm analysis

• How to estimate the speed of an algorithm

• Examination of code, solving recurrence relationships

• Learn about best case, worst case, and average case

• Learn seven classic sorting algorithms

• How these classic algorithms work

• How to implement them

• Perform speed analysis

CSCE 2014 - Programming Foundations II 3

OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…

CSCE 2014 - Programming Foundations II 4

OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…

CSCE 2014 - Programming Foundations II

Slow but simple to implement

5

OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…

CSCE 2014 - Programming Foundations II

Fast but complex to implement

6

OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…

CSCE 2014 - Programming Foundations II

Very fast but only work on

some types of data

7

OVERVIEW

▪ A long list of sorting algorithms have been invented

▪ Selection sort

▪ Bubble sort

▪ Insertion sort

▪ Merge sort

▪ Quick sort

▪ Bucket sort

▪ Radix sort

▪ And many more…

CSCE 2014 - Programming Foundations II

See wikipedia for the history of

sorting and many examples

8

SORTING

ALGORITHMS

ALGORITHM ANALYSIS

ALGORITHM ANALYSIS

• To compare two algorithms it is helpful to know how many

instructions are executed to process N data values

• For example, to calculate sum of N integers we could use:

int sum=0;

for (int i=0; i<N; i++)

sum += data[i];

• Here the loop is executed N times

• This is an O(N) algorithm

CSCE 2014 - Programming Foundations II 10

ALGORITHM ANALYSIS

• Similarly if we wanted to print the product of all possible

pairs of numbers between 0 and N-1 we could use:

for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

cout << data[i] * data[j] << endl;

• The outer loop will execute N times

• The inner loop will execute N * N = N2 times

• This is an O(N2) algorithm

CSCE 2014 - Programming Foundations II 11

ALGORITHM ANALYSIS

• Often the loops are more complex.

int count=0;

for (int i=0; i<N; i++)

for (int j=i; j<N; j++);

count++;

• The outer loop executes N times

• How many times is the inner loop executed?

CSCE 2014 - Programming Foundations II 12

ALGORITHM ANALYSIS

• Often the loops are more complex.

int count=0;

for (int i=0; i<N; i++)

for (int j=i; j<N; j++);

count++;

• The inner loop executes N + N-1 + ... + 2 + 1 times

• This equals (N+1) * N/2 = N2/2 + N/2

• This is less than N2 but only differs by a constant

• This is an O(N2) algorithm

CSCE 2014 - Programming Foundations II 13

ALGORITHM ANALYSIS

• Sometimes a loop can execute less than N times

• We saw this with binary search and the power function

• Here is a similar example:

int num = N;

while (num > 0)

num = num / 2;

• If N = 2P, the loop will execute P = log2N times

• This is an O(log2N) algorithm

CSCE 2014 - Programming Foundations II 14

ALGORITHM ANALYSIS

• Sometimes a log2N calculation is inside another loop:

for (int i=0; i<N; i++)

{

int num = N;

while (num > 0)

num = num / 2;

}

• The inner loop will execute N * log2 N times

• This is an O(N log2 N) algorithm

CSCE 2014 - Programming Foundations II 15

ALGORITHM ANALYSIS

• Linear search is O(N) but binary search is O(log N)

• For N = 1000 binary search takes only 10 steps

• This is 100 times faster than linear search

• For N = 1,000,000 binary search takes only 20 steps

• This is 50,000 times faster than linear search

• Most sorting algorithms are O(N log N) or O(N2)

• The speed difference for sorting is equally dramatic

• For N = 1000, the O(N log N) sort is 100 times faster

• For N = 1,000,000 the fast sort is 50,000 times faster

CSCE 2014 - Programming Foundations II 16

ALGORITHM ANALYSIS

CSCE 2014 - Programming Foundations II 17

ALGORITHM ANALYSIS

CSCE 2014 - Programming Foundations II 18

SORTING

ALGORITHMS

SELECTION SORT

SELECTION SORT

• Selection sort is a very simple sorting algorithm

• The idea is to iteratively select the smallest value from an

unsorted array, and put this at the end of a sorted array

• Loop N times

• Select the smallest value in unsorted array

• Mark this value as "taken” in the unsorted array

• Store smallest value at end of sorted array

• When this loop finishes, the unsorted array will be empty,

and the sorted array will have N values in ascending order

CSCE 2014 - Programming Foundations II 20

SELECTION SORT

CSCE 2014 - Programming Foundations II

Move the smallest value

21

SELECTION SORT

CSCE 2014 - Programming Foundations II

Move second smallest value

22

SELECTION SORT

CSCE 2014 - Programming Foundations II

Move last value

23

SELECTION SORT

CSCE 2014 - Programming Foundations II 24

SELECTION SORT

• One of the most expensive steps in selection sort is

finding the next smallest value in the unsorted array

• First we must find the location of the first “untaken” value

• Then we have to loop over the rest of the array to see if

any other “untaken” value is smaller

• Since the data array is N long this search takes N steps

• This search loop is inside a loop that executes N times

• Hence selection sort is an O(N2) algorithm

• In practice, using two arrays is inefficient, so most

implementations use one array and move data around

CSCE 2014 - Programming Foundations II 25

SELECTION SORT

CSCE 2014 - Programming Foundations II

In each pass of this algorithm we

swap the smallest value in the

unsorted part of array with

leftmost unsorted value and

increase the size of sorted part

26

SELECTION SORT

CSCE 2014 - Programming Foundations II

In the second pass we find and

swap the second smallest value

27

SELECTION SORT

CSCE 2014 - Programming Foundations II

Then we swap the third smallest

value in into its correct location

28

SELECTION SORT

CSCE 2014 - Programming Foundations II

In some cases the smallest

value does not need to be

swapped because it is already

in the correct location

29

SELECTION SORT

CSCE 2014 - Programming Foundations II

The selection sort loop ends

after N passes over the data

30

SELECTION SORT

• The selection sort algorithm can be adapted to search for

the next largest value in the unsorted part of the array

• In this case, the unsorted portion is on the left side and the

sorted portion is on the right side of the array

• Questions:

• Do you think the selection sort algorithm is faster if the

input data is already in sorted order?

• Do you think the selection sort algorithm is slower if the

input data is in reverse sorted order?

• Do you think selection sort is always O(N2)?

CSCE 2014 - Programming Foundations II 31

SELECTION SORT

• The selection sort algorithm can be adapted to search for

the next largest value in the unsorted part of the array

• In this case, the unsorted portion is on the left side and the

sorted portion is on the right side of the array

• Questions:

• Do you think the selection sort algorithm is faster if the

input data is already in sorted order? NO

• Do you think the selection sort algorithm is slower if the

input data is in reverse sorted order? NO

• Do you think selection sort is always O(N2)? YES

CSCE 2014 - Programming Foundations II 32

SELECTION SORT

void selection_sort(int data[], int low, int high)

{

// Loop over input array N times

for (int last = high; last > low; last--)

{

// Find index of largest value in unsorted array

int largest = low;

for (int index = low + 1; index <= last; index++)

if (data[index] > data[largest])

largest = index;

// Swap with last element in unsorted array

int temp = data[last];

data[last] = data[largest];

data[largest] = temp;

}

}

CSCE 2014 - Programming Foundations II

Notice that this sorting function

has two nested for loops

33

SELECTION SORT

Experimental results:

Enter number of data values:100

CPU time = 5.5e-05 sec

Enter number of data values:1000

CPU time = 0.004088 sec

Enter number of data values:10000

CPU time = 0.24972 sec

Enter number of data values:100000

CPU time = 14.2292 sec

CSCE 2014 - Programming Foundations II 34

SORTING

ALGORITHMS

BUBBLE SORT

BUBBLE SORT

• Bubble sort is a widely known sorting algorithm because it

is simple to explain and implement

• Unfortunately, this simplicity comes at a cost – speed

• The idea is to iteratively scan the data array from left to

right, and swap any adjacent values that are out of order

• Each pass over the array “bubbles” the largest data value

to the right, and smaller data values shift one to the left

• After N iterations over the input array, the data values will

be in sorted order

CSCE 2014 - Programming Foundations II 36

BUBBLE SORT

CSCE 2014 - Programming Foundations II 37

BUBBLE SORT

CSCE 2014 - Programming Foundations II 38

BUBBLE SORT

CSCE 2014 - Programming Foundations II 39

BUBBLE SORT

CSCE 2014 - Programming Foundations II 40

BUBBLE SORT

void bubble_sort(int data[], int low, int high)

{

// Loop over array N times

for (int count = low; count < high; count++)

{

// Loop over N elements in array

for (int index = low; index < high; index++)

{

// Swap two data values if out of order

if (data[index] > data[index + 1])

{

int temp = data[index];

data[index] = data[index + 1];

data[index + 1] = temp;

}

}

}

}CSCE 2014 - Programming Foundations II

Notice that this sorting function

has two nested for loops

41

BUBBLE SORT

• How long does bubble sort take to sort an array?

• There are N passes over the array

• For each pass N-1 pairs of adjacent values are compared

• In total there are N * (N-1) = N2 – N comparisons

• Hence this is an O(N2) sorting algorithm

• What happens if the input array is already sorted?

• The current algorithm will do N passes over the data

• No data values will be swapped in each pass

• This is a massive waste of CPU time

CSCE 2014 - Programming Foundations II 42

BUBBLE SORT

• To improve bubble sort we can stop when no swaps occur

• Initialize swap counter to zero before each pass

• When swap counter is still zero after the comparison pass

the array is in sorted order and we can stop looping

• In the best case, when the data is already sorted, this

improved bubble sort is only O(N) steps

• This algorithm will still be O(N2) on average, but with a

smaller run time constant than the basic bubble sort

CSCE 2014 - Programming Foundations II 43

BUBBLE SORT

void bubble_sort(int data[], int low, int high)

{

// Bubble largest value to the right N times

int pass = 1;

int exchange = 1;

int count = high - low + 1;

while ((pass < count) && (exchange > 0))

{

// Scan unsorted part of data array

exchange = 0;

for (int index = low; index <= high - pass; index++)

...

CSCE 2014 - Programming Foundations II

By checking the number of

exchanges, we can stop the

outer loop when data is sorted

44

BUBBLE SORT

{

// Swap two data values if out of order

if (data[index] > data[index + 1])

{

int temp = data[index];

data[index] = data[index + 1];

data[index + 1] = temp;

exchange++;

}

}

pass++;

}

}

CSCE 2014 - Programming Foundations II 45

BUBBLE SORT

Experimental results with basic bubble sort:

Enter number of data values:100

CPU time = 0.000144 sec

Enter number of data values:1000

CPU time = 0.009901 sec

Enter number of data values:10000

CPU time = 0.503489 sec

Enter number of data values:100000

CPU time = 43.8939 sec

CSCE 2014 - Programming Foundations II 46

BUBBLE SORT

Experimental results with improved bubble sort:

Enter number of data values:100

CPU time = 3.5e-05 sec

Enter number of data values:1000

CPU time = 0.004836 sec

Enter number of data values:10000

CPU time = 0.402202 sec

Enter number of data values:100000

CPU time = 30.8026 sec

CSCE 2014 - Programming Foundations II

Although this is much

faster than the basic

bubble sort algorithm it

is still very slow for

large values of N

47

SORTING

ALGORITHMS

INSERTION SORT

INSERTION SORT

▪ Insertion sort is another simple (but slow) algorithm

▪ The idea is to gradually create a sorted array by inserting

unsorted data values one-by-one into a sorted array

▪ Loop N times

▪ Look at the next data value in the unsorted array

▪ Move sorted data to make room for this value

▪ Insert data value into correct location in sorted array

• When this loop finishes, the unsorted array will be empty,

and the sorted array will have N values in ascending order

49CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ The tricky part of the insertion sort algorithm is making

room for the new data

▪ Set array index to current length of sorted array

▪ While data[index-1] greater than insert_value

▪ Shift data using “data[index] = data[index-1]”

▪ Decrement index using “index=index-1”

▪ Store insert_value in data[index]

▪ This process is the most expensive step in insertion sort

50CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

51CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

52CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3

53CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3

1 1 3 4 5 9 shift 3, index = 2

54CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting value 2 into sorted array

▪ We have to shift 4 values to make room for the 2

0 1 2 3 4 5 6 7

1 1 3 4 5 9 index = 6

1 1 3 4 5 9 shift 9, index = 5

1 1 3 4 5 9 shift 5, index = 4

1 1 3 4 5 9 shift 4, index = 3

1 1 3 4 5 9 shift 3, index = 2

1 1 2 3 4 5 9 insert 2 at index 2

55CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

56CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

57CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

58CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

59CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

60CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

61CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6

62CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6

1 1 2 3 4 5 9 - shift 3 4 5 9, insert 2 - - - - - - - 6

63CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Example inserting N unsorted data into sorted array

▪ We repeat the insert process N times

Sorted data Actions taken Unsorted data

- - - - - - - - 3 1 4 1 5 9 2 6

3 - - - - - - - insert 3 - 1 4 1 5 9 2 6

1 3 - - - - - - shift 3, insert 1 - - 4 1 5 9 2 6

1 3 4 - - - - - insert 4 - - - 1 5 9 2 6

1 1 3 4 - - - - shift 3 4, insert 1 - - - - 5 9 2 6

1 1 3 4 5 - - - insert 5 - - - - - 9 2 6

1 1 3 4 5 9 - - insert 9 - - - - - - 2 6

1 1 2 3 4 5 9 - shift 3 4 5 9, insert 2 - - - - - - - 6

1 1 2 3 4 5 6 9 shift 9, insert 6 - - - - - - - -

64CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6 Unsorted data

65CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

66CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

67CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

68CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

69CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

70CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9

71CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9

1 1 2 3 4 5 9 6 shift 3 4 5 9, insert 2

72CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Insertion sort is normally implemented with one array and

we keep track of which half is sorted (white and green)

and which half is unsorted (pink).

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6 insert 3

1 3 4 1 5 9 2 6 shift 3, insert 1

1 3 4 1 5 9 2 6 insert 4

1 1 3 4 5 9 2 6 shift 3 4, insert 1

1 1 3 4 5 9 2 6 insert 5

1 1 3 4 5 9 2 6 insert 9

1 1 2 3 4 5 9 6 shift 3 4 5 9, insert 2

1 1 2 3 4 5 6 9 shift 9, insert 6

73CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Notice that in the previous example

▪ Some insertions caused a lot of data shifting

▪ Other insertions caused no data shifting

▪ On average we can expect half the sorted data to shift

▪ The data insertion loop iterates N times

▪ On iteration K we shift K/2 values on average

▪ Total data shifts = (0+1+2+3+…+N-1)/2

= (N * (N-1)/2)/2

= (N2 – N)/2

▪ Hence insertion sort is an O(N2) algorithm on average

74CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ If the “unsorted data” is in reverse sorted order, we must

shift all the data for each insert

▪ This is the worst case for insertion sort

▪ Total data shifts = (N2 – N)

▪ Hence algorithm is O(N2) in worst case

▪ If the “unsorted data” is in sorted order, we do no shifting

▪ This is the best case for insertion sort

▪ Total data shifts = 0 for N insertions

▪ Hence algorithm is O(N) in best case

75CSCE 2014 - Programming Foundations II

INSERTION SORT

void insertion_sort(int data[], int low, int high)

{

// Insert each element of unsorted list into sorted list

for (int unsorted = low + 1; unsorted <= high; unsorted++)

{

// Select unsorted value to be inserted

int value = data[unsorted];

int posn = unsorted;

// Make room for new data value

while ((posn > 0) && (data[posn - 1] > value))

{ data[posn] = data[posn - 1]; posn--; }

// Put new value into array

data[posn] = value;

}

}

Notice that this sorting function

has two nested loops

76CSCE 2014 - Programming Foundations II

INSERTION SORT

Experimental results:

Enter number of data values: 100

CPU time = 3.6e-05 sec

Enter number of data values: 1000

CPU time = 0.002247 sec

Enter number of data values: 10000

CPU time = 0.150965 sec

Enter number of data values: 100000

CPU time = 8.23081 sec

77CSCE 2014 - Programming Foundations II

INSERTION SORT

Experimental results:

Enter number of data values: 100

CPU time = 3.6e-05 sec

Enter number of data values: 1000

CPU time = 0.002247 sec

Enter number of data values: 10000

CPU time = 0.150965 sec

Enter number of data values: 100000

CPU time = 8.23081 sec
This is faster than

selection sort (14 sec)

or bubble sort (30 sec)

78CSCE 2014 - Programming Foundations II

INSERTION SORT

▪ Sometimes the data insertion phase is implemented with

an element-by-element swap that is similar to bubble sort.

▪ Instead of “bubbling” the largest value to right, we “bubble”

the inserted value to the left until it is in correct location

▪ This approach requires slightly more CPU time because

we keep moving the inserted value over and over

▪ This approach is illustrated in the example below

▪ We use one index for location of data being inserted

▪ We use second index to keep track of bubble location

79CSCE 2014 - Programming Foundations II

INSERTION SORT

80

7 2 3 4 6 1 8 5 9 10

Sorted

portion

Next thing to insert

Unsorted portion

CSCE 2014 - Programming Foundations II

INSERTION SORT

81

7 2 3 4 6 1 8 5 9 10

Sorted portion

Next thing to insert

Unsorted portion

CSCE 2014 - Programming Foundations II

INSERTION SORT

82

2 7 3 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

83

2 7 3 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

84

2 3 7 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

85

2 3 7 4 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

86

2 3 4 7 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

87

2 3 4 7 6 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

88

2 3 4 6 7 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

89

2 3 4 6 7 1 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

90

2 3 4 6 1 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

91

2 3 4 1 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

92

2 3 1 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

93

2 1 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

94

1 2 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

95

1 2 3 4 6 7 8 5 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

96

1 2 3 4 6 7 8 5 9 10

Sorted portion
Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

97

1 2 3 4 6 7 5 8 9 10

Sorted portion
Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

98

1 2 3 4 6 5 7 8 9 10

Sorted portion
Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

99

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

100

1 2 3 4 5 6 7 8 9 10

Sorted portion Unsorted portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

101

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted

portion

Next thing to insert

CSCE 2014 - Programming Foundations II

INSERTION SORT

102

1 2 3 4 5 6 7 8 9 10

Sorted portion
Unsorted

portion

CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

MERGE SORT

MERGE SORT

▪ Merge sort is a very clever “divide and conquer” sorting

algorithm that is much faster than the previous methods

▪ The key idea is that sorting N data values can be broken

into three steps

▪ Divide the input data into two parts that are N/2 long

▪ Sort the two arrays of N/2 values

▪ Merge the two arrays of N/2 values to get N sorted values

▪ First we demonstrate the merging step with the following:

1 3 4 7 8 2 5 6 9 10

104CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Start with two sorted arrays, start two indices at smallest

values in each array, copy smallest value to merged array

1 3 4 7 8 2 5 6 9 10

1 is smaller

1

105CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

2 is smaller

1 2

106CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

3 is smaller

1 2 3

107CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

4 is smaller

1 2 3 4

10

8
CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

5 is smaller

1 2 3 4 5

10

9
CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

6 is smaller

1 2 3 4 5 6

110CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

7 is smaller

1 2 3 4 5 6 7

111CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Advance the array index on one array, select smallest

value and copy into merged array

1 3 4 7 8 2 5 6 9 10

8 is smaller

1 2 3 4 5 6 7 8

112CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Index has reached end of one array, copy remaining

values from second array into merged array

1 3 4 7 8 2 5 6 9 10

copy the 9

1 2 3 4 5 6 7 8 9

113CSCE 2014 - Programming Foundations II

MERGE SORT

▪ Index has reached end of one array, copy remaining

values from second array into merged array

1 3 4 7 8 2 5 6 9 10

copy the 10

1 2 3 4 5 6 7 8 9 10

114CSCE 2014 - Programming Foundations II

MERGE SORT

▪ How are we going to sort the two arrays of N/2 values?

▪ Divide both arrays of N/2 values into arrays of N/4 values

▪ Sort the arrays of N/4 values

▪ Merge arrays of N/4 values to create array of N/2 values

▪ How are we going to sort the two arrays of N/4 values?

▪ Divide both arrays of N/4 values into arrays of N/8 values

▪ Sort the arrays of N/8 values

▪ Merge arrays of N/8 values to create array of N/4 values

▪ We continue this recursive “divide and conquer” process
until the array being divided is only one element long

115CSCE 2014 - Programming Foundations II

MERGE SORT

Start with an unsorted array of length N=8

3 1 4 1 5 9 2 6

116CSCE 2014 - Programming Foundations II

MERGE SORT

Split into 2 arrays of length N/2=4

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

117CSCE 2014 - Programming Foundations II

MERGE SORT

Split into 4 arrays of length N/4=2

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

118CSCE 2014 - Programming Foundations II

MERGE SORT

Split into N=8 arrays of length 1

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

119CSCE 2014 - Programming Foundations II

MERGE SORT

Start merging phase with N=8 arrays of length 1

3 1 4 1 5 9 2 6

120CSCE 2014 - Programming Foundations II

MERGE SORT

Merge to create N/2=4 sorted arrays of length 2

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

121CSCE 2014 - Programming Foundations II

MERGE SORT

Merge to create N/4=2 sorted arrays of length 4

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

122CSCE 2014 - Programming Foundations II

MERGE SORT

Merge to create N/8=1 sorted array of length 8

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

123CSCE 2014 - Programming Foundations II

MERGE SORT

void merge_sort(int data[], int low, int high)

{

// Check terminating condition

int count = high - low + 1;

if (count > 1)

{

// Divide the array and sort both halves

int mid = (low + high) / 2;

merge_sort(data, low, mid);

merge_sort(data, mid + 1, high);

// Merge sorted arrays

...

The terminating condition is

when the array is <= 1 long

124CSCE 2014 - Programming Foundations II

MERGE SORT

void merge_sort(int data[], int low, int high)

{

// Check terminating condition

int count = high - low + 1;

if (count > 1)

{

// Divide the array and sort both halves

int mid = (low + high) / 2;

merge_sort(data, low, mid);

merge_sort(data, mid + 1, high);

// Merge sorted arrays

...

We make two recursive calls

to sort the left and right

halves of the input array

125CSCE 2014 - Programming Foundations II

MERGE SORT

CSCE 2014 - Programming Foundations II 126

S(0,7)

S(0,3)

S(4,7)

S(2,3)

S(0,1)

S(6,7)

S(4,5)

Box method trace for

sorting an array of 8 items

MERGE SORT

// Create temporary array for merged data

int *copy = new int[range];

// Initialize array indices

int index1 = low;

int index2 = mid + 1;

int index = 0;

// Merge smallest data elements into copy array

while (index1 <= mid && index2 <= high)

{

if (data[index1] <= data[index2])

copy[index++] = data[index1++];

else

copy[index++] = data[index2++];

}

...

Next, we merge the two sorted

arrays into a temporary array

127CSCE 2014 - Programming Foundations II

MERGE SORT

...

// Copy any remaining entries from the first half

while (index1 <= mid)

copy[index++] = data[index1++];

// Copy any remaining entries from the second half

while (index2 <= high)

copy[index++] = data[index2++];

// Copy data back from the temporary array

for (index = 0; index < range; index++)

data[low + index] = copy[index];

delete[]copy;

}

}

Finally, we copy temporary

array back into original array

128CSCE 2014 - Programming Foundations II

MERGE SORT

Experimental results:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.000439 sec

Enter number of data values: 10000

CPU time = 0.004654 sec

Enter number of data values: 100000

CPU time = 0.046654 sec

129CSCE 2014 - Programming Foundations II

MERGE SORT

Experimental results:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.000439 sec

Enter number of data values: 10000

CPU time = 0.004654 sec

Enter number of data values: 100000

CPU time = 0.046654 sec

This is much faster than

insertion sort (8 sec)

selection sort (14 sec)

or bubble sort (30 sec)

130CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

MERGE SORT ANALYSIS

MERGE SORT ANALYSIS

To merge N=8 values takes log2N=3 levels of merging

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

3

132CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

Each merge step processes all N values

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

N

133CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

Total work merging sorted arrays is O(N log2N)

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

3

N

134CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

Similarly, total work splitting unsorted arrays is O(N log2N)

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3

N

135CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ The slitting and merging phases are both O(N log2N)

▪ Hence, the merge sort algorithm is O(N log2N)

▪ This is a tremendous speed improvement over O(N2)

O(N) O(N log2N) O(N2)

10 33 100

100 664 10,000

1,000 9,966 1,000,000

10,000 132,877 100,000,000

100,000 1,660,964 10,000,000,000

1,000,000 19,931,569 1,000,000,000,000

136CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ Let S(N) be amount of work to sort N values

▪ S(1) = 1 - a single data value

▪ S(N) = 2 * S(N/2) + N - 2 recursive sorts and merge

▪ Substituting the recurrence relationship into itself

▪ S(N) = 2 * S(N/2) + N

▪ S(N) = 2 * (2 * S(N/4) + N/2) + N

▪ S(N) = 4 * S(N/4) + 2 * N

▪ S(N) = 4 * (2 * S(N/8) + N/4) + 2 * N

▪ S(N) = 8 * S(N/8) + 3 * N

▪ …

137CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ Notice the pattern?

▪ S(N) = 2 * S(N/2) + N

▪ S(N) = 4 * S(N/4) + 2 * N

▪ S(N) = 8 * S(N/8) + 3 * N

▪ S(N) = 16 * S(N/16) + 4 * N

▪ ...

These values are

powers of 2

138CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ Notice the pattern?

▪ S(N) = 2 * S(N/2) + N

▪ S(N) = 4 * S(N/4) + 2 * N

▪ S(N) = 8 * S(N/8) + 3 * N

▪ S(N) = 16 * S(N/16) + 4 * N

▪ …

▪ If we let k be the power, the recurrence formula becomes

▪ S(N) = 2k * S(N/2k) + k * N

These are

the powers

139CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ Assume that N = 2k where k = log2N

▪ Substituting for 2k and k in the recurrence formula we get

▪ S(N) = 2k * S(N/2k) + k * N

▪ S(N) = N * S(N/N) + log2N * N

▪ S(N) = N * S(1) + log2N * N

▪ S(N) = N * 1 + log2N * N

▪ S(N) = N + N log2N

▪ Since N is smaller than N log2N we can ignore this term

▪ Hence the merge sort algorithm is O(N log2N)

140CSCE 2014 - Programming Foundations II

MERGE SORT ANALYSIS

▪ What happens if the input array is already sorted?

▪ The splitting is not affected

▪ The merging is not affected

▪ The algorithm is still O(N log2N)

▪ The number of splitting and merging steps in this

algorithm do not depend on the data values in the array

▪ Best case is O(N log2N)

▪ Worst case is O(N log2N)

▪ Average case is O(N log2N)

141CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

QUICKSORT

QUICKSORT

▪ Quicksort is another “divide and conquer” algorithm that

is famous for being fast (hence the name)

▪ It was invented in 1960 by Tony Hoare

▪ The key idea is to partition the unsorted array into two

parts, sort the two parts, and combine to get sorted result

▪ The really clever idea is to partition the data with small

values in one part and large values in the other part

▪ This way the combine step takes no work!

143CSCE 2014 - Programming Foundations II

QUICKSORT

Step 1: Partition unsorted data into two parts

144

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

We put all small values

on the left and all large

values on the right

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 2: Sort the small values on the left (recursively)

145

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 3: Sort the large values on the right (recursively)

146

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 4: Combine the two sorted halves (no work)

147

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9

1 1 2 3 4 5 6 9

CSCE 2014 - Programming Foundations II

QUICKSORT

▪ How can we partition the input array so all small values
are on the left and all large values are on the right?

▪ Hoare’s solution was to select a “pivot value” from array
and use this value to decide what is “small” and “large”

▪ Simple choice is to use rightmost array location

▪ Hoare’s partition algorithm:

▪ Scan the unsorted array from left to right until we find a
data value that is greater than the pivot

▪ Scan the unsorted array from right to left until we find a
data value that is less than the pivot

▪ Swap these two values, repeat until the L-R and R-L scans
cross each other in the middle of the array

148CSCE 2014 - Programming Foundations II

QUICKSORT

Step 1: Select rightmost array value as pivot value

149

3 1 6 1 5 9 2 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 2: Scan L-R to find value greater than pivot value

150

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 3: Scan R-L to find value smaller than pivot value

151

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Step 4: Swap the values if left value > right value

152

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 6 1 5 9 2 4

3 1 2 1 5 9 6 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Repeat Step 2: Scan L-R to find value greater than pivot

153

3 1 2 1 5 9 6 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Repeat Step 3: Scan R-L to find value smaller than pivot

154

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

CSCE 2014 - Programming Foundations II

QUICKSORT

Repeat Step 4: Swap the values if left value > right value

155

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

Since the left value < right value

we do NOT swap these values

CSCE 2014 - Programming Foundations II

QUICKSORT

Now we have partitioned the array into two parts

156

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

All of these values are

less than the pivot value

CSCE 2014 - Programming Foundations II

QUICKSORT

Now we have partitioned the array into two parts

157

3 1 2 1 5 9 6 4

3 1 2 1 5 9 6 4

All of these values are

greater than or equal

to the pivot value

CSCE 2014 - Programming Foundations II

QUICKSORT

After recursively sorting both halves the array is sorted

158

3 1 2 1 5 9 6 4

1 1 2 3 4 5 6 9

No data movement is needed

because all small values are

already left of all large values

CSCE 2014 - Programming Foundations II

QUICKSORT

void quick_sort(int data[], int low, int high)

{

// Check terminating condition

if (low < high)

{

// Partition data into two parts

int mid = 0;

partition(data, low, high, mid);

// Recursive calls to sort array

quick_sort(data, low, mid - 1);

quick_sort(data, mid + 1, high);

}

}

159

We call partition to divide the

array into two parts

CSCE 2014 - Programming Foundations II

QUICKSORT

void quick_sort(int data[], int low, int high)

{

// Check terminating condition

if (low < high)

{

// Partition data into two parts

int mid = 0;

partition(data, low, high, mid);

// Recursive calls to sort array

quick_sort(data, low, mid - 1);

quick_sort(data, mid + 1, high);

}

}

160

We make two recursive calls

to sort the parts of array

CSCE 2014 - Programming Foundations II

QUICKSORT

void partition(int data[], int low, int high, int &mid)

{

// Use data[high] for pivot value

int pivot = data[high];

// Partition array into two parts

int left = low;

int right = high;

while (left < right)

{

// Scan left to right

while ((left < right) && (data[left] < pivot))

left++;

161

First, we do L-R scan to

find value >= pivot value

CSCE 2014 - Programming Foundations II

QUICKSORT

...

// Scan right to left

while ((left < right) && (data[right] >= pivot))

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

162

Next, we do R-L scan to

find value < pivot value

CSCE 2014 - Programming Foundations II

QUICKSORT

...

// Scan right to left

while ((left < right) && (data[right] >= pivot))

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

163

Then we swap the two

data values

CSCE 2014 - Programming Foundations II

QUICKSORT

...

// Scan right to left

while ((left < right) && (data[right] >= pivot))

right--;

// Swap data values

int temp = data[left];

data[left] = data[right];

data[right] = temp;

}

// Swap pivot to mid

mid = left;

data[high] = data[mid];

data[mid] = pivot;

}

164

Finally we swap pivot

value to middle of array

CSCE 2014 - Programming Foundations II

QUICKSORT

Experimental results for random data:

Enter number of data values: 100

CPU time = 2.0e-05 sec

Enter number of data values: 1000

CPU time = 0.00025 sec

Enter number of data values: 10000

CPU time = 0.003042 sec

Enter number of data values: 100000

CPU time = 0.034606 sec

165CSCE 2014 - Programming Foundations II

QUICKSORT

Experimental results for random data:

Enter number of data values: 100

CPU time = 2.0e-05 sec

Enter number of data values: 1000

CPU time = 0.00025 sec

Enter number of data values: 10000

CPU time = 0.003042 sec

Enter number of data values: 100000

CPU time = 0.034606 sec

166

This is slightly faster

than merge sort

(0.046654 sec)

CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

QUICKSORT ANALYSIS

QUICKSORT ANALYSIS

▪ The run time performance of quicksort for random data is

very similar to the merge sort algorithm

▪ The input array is partitioned into two arrays N/2 long

▪ These arrays are partitioned into four arrays N/4 long

▪ These arrays are partitioned into eight arrays N/8 long

▪ This partitioning process stops after log2N steps

▪ Each partition step must look at N array values

▪ Hence quicksort is O(N log2N) for random data

▪ In practice quicksort is slightly faster then merge sort

because there is less data copying and no merge step

168CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Let S(N) be amount of work to sort N random values

▪ S(1) = 1

▪ S(N) = 2 * S(N/2) + N

▪ …

▪ S(N) = 2k * S(N/2k) + k * N

▪

▪ Assume that N = 2k where k = log2N

▪ S(N) = N * S(N/N) + log2N * N

▪ S(N) = N * S(1) + log2N * N

▪ S(N) = N log2N + N

▪ Hence quicksort is O(N log2N) for random data

169CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

170

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

> pivot

CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

171

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

< pivot

CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

172

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

Swap
CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

173

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

The left is 6 long

CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Potential problem: What happens if the pivot value is not

in the middle of the range of data values?

▪ We will partition the array into two unequal halves

174

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 9 2 6

3 1 4 1 5 2 9 6

The right is 2 long

CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ The worst case for pivot selection happens when the data

is already in sorted order

▪ The rightmost value in array will be larger than all others

▪ 1st partition will produce arrays N-1 long and 1 long

▪ 2nd partition will produce arrays N-2 long and 1 long

▪ 3rd partition will produce arrays N-3 long and 1 long

▪ This partitioning stops after N steps

▪ Each partition step looks at N/2 values on average

▪ Hence the worst case for quicksort is an O(N2)

175CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ Let S(N) be amount of work to sort N sorted values

▪ S(1) = 1

▪ S(N) = S(N-1) + S(1) + N

▪ S(N) = S(N-2) + 2 * S(1) + N + N-1

▪ S(N) = S(N-k) + k * S(1) + N + N-1 + … + N-k-1

▪ The partitioning stops when k = N-1

▪ S(N) = S(1) + (N-1) * S(1) + N + N-1 + … + 1

▪ S(N) = 1 + (N-1) + (N+1)*N/2

▪ S(N) = N2/2 + 3*N/2

▪ Hence the worst case for quicksort is O(N2)

176CSCE 2014 - Programming Foundations II

QUICKSORT

Experimental results for sorted data:

Enter number of data values: 100

CPU time = 5.4e-05 sec

Enter number of data values: 1000

CPU time = 0.003985 sec

Enter number of data values: 10000

CPU time = 0.22371 sec

Enter number of data values: 100000

CPU time = 13.6309 sec

177

This is slower than

insertion sort (8 sec)

and similar to selection

sort (14 sec)

CSCE 2014 - Programming Foundations II

QUICKSORT ANALYSIS

▪ The selection of quicksort pivots has been widely studied

▪ Robert Sedgewick did his PhD dissertation on this topic

▪ He has also written several excellent algorithms books

▪ Common pivot choices:

▪ Selecting the last value as pivot is bad for sorted data

▪ Selecting the first value as pivot is bad for sorted data

▪ Selecting the middle value as pivot is good for sorted data

▪ Selecting the median of first, middle, last values is the

most expensive choice, but also the most robust

▪ See sort.cpp on class website for implementation details

178CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

COUNTING SORT

COUNTING SORT

▪ All of the sorting techniques we have discussed so far are

general purpose “comparison based” algorithms

▪ These algorithms will work for any data type that can be

compared to each other (floats, integers, chars, strings)

▪ We rearrange data in the array based on comparisons

▪ Counting sort is a “non-comparison based” algorithm that

was invented in 1954 by Harold Seward

▪ Instead of comparing elements, we simply count them and

use this information to output sorted data

▪ This approach works for integers and characters but it

does not work for floats or strings

180CSCE 2014 - Programming Foundations II

COUNTING SORT

▪ The counting sort algorithm has the following steps

▪ Create an array to contain the count information

▪ Initialize this count array to all zeros

▪ Loop over the data array and increment the counters

▪ Loop over the count array to create sorted output

▪ We demonstrate counting sort by sorting 30 integers

between the values of 0 and 9

▪ We use the first 30 digits of PI just for fun

181CSCE 2014 - Programming Foundations II

COUNTING SORT

The unsorted data is shown below

182

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

CSCE 2014 - Programming Foundations II

COUNTING SORT

First, we create and initialize the counting array to zeros

183

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

184

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

185

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 1 0 0 1 0 0 0 0 0

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

186

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 0 0 0 0 0

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

187

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 1 0 0 0 0

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

188

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 0 0 1 1 0 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

189

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 1 0 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

190

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 1 1 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next we loop over the digit array and increment counters

191

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 0 1 2 1 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Next, we loop over the digit array and increment counters

192

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 1 1 2 1 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

After 10 digits we have the following counts

193

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 1 1 1 3 1 0 0 1

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

After 20 digits we have the following counts

194

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 2 3 2 3 2 1 2 3

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

After 30 digits we have the following counts

195

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Now we can create the sorted output array

196

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

First, we output zero 0’s

197

1 4 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output two 1’s

198

1 1 1 5 9 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output four 2’s

199

1 1 2 2 2 2 6 5 3 5

8 9 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output six 3’s

200

1 1 2 2 2 2 3 3 3 3

3 3 7 9 3 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output three 4’s

201

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 2 3 8 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output three 5’s

202

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 4 6

2 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output three 6’s

203

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 6 4 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output two 7’s

204

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 3 3 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Then we output three 8’s

205

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 8 8 8 3 2 7 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

Finally, we output four 9’s

206

1 1 2 2 2 2 3 3 3 3

3 3 4 4 4 5 5 5 6 6

6 7 7 8 8 8 9 9 9 9

0 1 2 3 4 5 6 7 8 9

0 2 4 6 3 3 3 2 3 4

index

count

CSCE 2014 - Programming Foundations II

COUNTING SORT

▪ How much work was needed for this example?

▪ Create and initialize count array (10 steps)

▪ Loop over data array to get counts (30 steps)

▪ Loop over count array to use counts (10 steps)

▪ Output sorted values in data array (30 steps)

▪ To generalize:

▪ Assume the input array is N long

▪ Assume the data has a range of M values

▪ Total work for counting sort = 2 * N + 2 * M = O(N + M)

207CSCE 2014 - Programming Foundations II

COUNTING SORT

▪ When should we use counting sort?

▪ When the data values can be counted (int, char)

▪ When the value of M is small compared to N

▪ Sorting first 30 digits of PI: N=30, M=10

▪ Counting sort is excellent in this case

▪ When should we not use counting sort?

▪ When the data values can not be counted (float, string)

▪ When the value of M is large compared to N

▪ Sorting 100 UofA student IDs: N=100, M=1,000,000,000

▪ Counting sort is terrible this case

208CSCE 2014 - Programming Foundations II

COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

209

First we initialize the

counting array to zeros

CSCE 2014 - Programming Foundations II

COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

210

Then we loop over input array

incrementing the counters

CSCE 2014 - Programming Foundations II

COUNTING SORT

void counting_sort(int data[], int low, int high, int range)

{

// Initialize data count array

int *datacount = new int[range];

for (int cindex = 0; cindex < range; cindex++)

datacount[cindex] = 0;

// Count number of occurrences of each data value

for (int dindex = low; dindex <= high; dindex++)

datacount[data[dindex]]++;

...

211

Note: we assume all data values

are between [0..range-1] or an

array bounds error will occur

CSCE 2014 - Programming Foundations II

COUNTING SORT

...

// Generate output array

int dindex = low;

for (int cindex = 0; cindex < range; cindex++)

{

for (int index = 0; index < datacount[cindex]; index++)

data[dindex + index] = cindex;

dindex += datacount[cindex];

}

delete[]datacount;

}

212

Finally we loop over the

count array and produce

the sorted output array

CSCE 2014 - Programming Foundations II

COUNTING SORT

Experimental results for random data:

Enter number of data values: 100

Enter range of data values: 100

CPU time = 1.8e-05 sec

Enter number of data values: 1000

Enter range of data values: 100

CPU time = 4.5e-05 sec

Enter number of data values: 10000

Enter range of data values: 100

CPU time = 0.000319 sec

213CSCE 2014 - Programming Foundations II

COUNTING SORT

Experimental results for random data:

Enter number of data values: 100000

Enter range of data values: 100

CPU time = 0.001492 sec

Enter number of data values: 1000000

Enter range of data values: 100

CPU time = 0.015416 sec

Enter number of data values: 1000000

Enter range of data values: 1000000

CPU time = 0.047364 sec

214

Increasing the data

range makes counting

sort run slower
CSCE 2014 - Programming Foundations II

Quicksort takes

0.034606 sec

SORTING

ALGORITHMS

RADIX SORT

RADIX SORT

▪ Radix sort is a “non-comparison based” algorithm that was

invented in 1887 by Herman Hollerith

▪ Hollerith used this algorithm in his mechanical tabulating

machine to sort punched cards for the 1890 US census

▪ The algorithm was implemented in software in 1954 by

Herman Seward (who invented counting sort in the process)

▪ This sorting algorithm works for all most common data types

by processing values one digit or letter at a time

▪ The algorithm works for any base (2 for binary, 10 for digits,

26 for letters) so it is called a radix sort

216CSCE 2014 - Programming Foundations II

RADIX SORT

217
Replica of Hollerith’s tabulating machine with sorting box (from Wikipedia)

CSCE 2014 - Programming Foundations II

RADIX SORT

218
IBM card sorting machine that uses radix sort (from Wikipedia)

CSCE 2014 - Programming Foundations II

RADIX SORT

▪ The radix sort algorithm has the following steps:

▪ Assume there are N data values with D digits in base R

▪ Create R buckets (arrays or linked lists) for storing data values

▪ Perform D passes over the data array

▪ Each pass will look at one digit of the data value from least

significant digit to most significant digit

▪ Based on value of digit, move data into corresponding bucket

▪ Combine all R buckets after each pass

▪ After D passes over the data will be in sorted order

219CSCE 2014 - Programming Foundations II

RADIX SORT

Example with eight 3-digit integers

220

Original 170 045 075 090 002 802 002 066

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 1’s digit

221

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 0 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 1’s digit

222

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 2 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 1’s digit

223

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 5 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 1’s digit

224

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

The 6 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 10’s digit

225

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 0 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 10’s digit

226

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 4 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 10’s digit

227

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 6 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 10’s digit

228

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 7 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 10’s digit

229

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

The 9 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 100’s digit

230

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 0 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 100’s digit

231

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 1 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 100’s digit

232

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

The 8 bucket

CSCE 2014 - Programming Foundations II

RADIX SORT

Place data into buckets based on 100’s digit

233

Original 170 045 075 090 002 802 002 066

1's 170 090 002 802 002 045 075 066

10's 002 802 002 045 066 170 075 090

100's 002 002 045 066 075 090 170 802

After 3 passes the input

data is now in sorted order

CSCE 2014 - Programming Foundations II

RADIX SORT

▪ Essential implementation details:

▪ We can implement buckets using linked lists or arrays

▪ For arrays, we must know in advance the size and staring

point for each of the R buckets for each pass

▪ This can be calculated by one pass over the data that

counts the number of times each digit occurs

▪ We must maintain the original ordering of data within each

bucket by filling buckets from the right

▪ We must make ensure that all data is D digits long by

padding integers to left and strings to the right

234CSCE 2014 - Programming Foundations II

RADIX SORT

▪ How much work is done by radix sort?

▪ Assume there are N data values with D digits in base R

▪ There are D passes over the array

▪ We must move N data values in each pass

▪ Hence radix sort is O(N*D)

▪ Radix sort is fast when D is small compared to N

▪ Sorting 1000 3-digit integers

▪ Radix sort is slow when D is greater than or equal to N

▪ Sorting 3 1000-digit integers

235CSCE 2014 - Programming Foundations II

SORTING

ALGORITHMS

SUMMARY

SUMMARY

▪ In this section, we introduced algorithm analysis for

searching and sorting, and the differences between

O(logN), O(N), O(N logN), and O(N2) algorithms

▪ We discussed three O(N2) sorting techniques:

▪ We described the Selection sort algorithm and its

implementation and run time performance

▪ We described two versions of the Bubble sort algorithm

and compared their implementations

▪ We described the Insertion sort algorithm and its

implementation and run time performance

CSCE 2014 - Programming Foundations II 237

SUMMARY

▪ We discussed two O(N logN) sorting methods:

▪ We described the recursive merge sort algorithm and its

implementation and run time performance

▪ We did an analysis of merge sort and demonstrated that

this is an O(N logN) algorithm

▪ Quicksort is a divide and conquer algorithm that is faster

then most other sorting algorithms most of the time

▪ We did an analysis of quicksort and demonstrated that this

algorithm is O(N logN) on average but O(N2) in worst case

▪ These sorting algorithms demonstrate that slightly more

complex algorithms can outperform simple algorithms

238CSCE 2014 - Programming Foundations II

SUMMARY

▪ Finally, we described two specialized sorting algorithms

▪ Counting sort is a “non-comparison based” sort that is well

suited for sorting large arrays of small integers

▪ Radix sort is a “non-comparison based” algorithm that

sorts fixed size data one digit at a time using buckets

▪ These sorting algorithms have very different best case

and worst-case behaviors so we have to be careful when

deciding what sorting algorithm to use

239CSCE 2014 - Programming Foundations II

SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

240

The O(N2) algorithms have relatively slow run times, insertion

sort is often the fastest, especially for mostly sorted data
CSCE 2014 - Programming Foundations II

SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

241

The O(N logN) algorithms have similar run times, but quicksort

is generally the fastest, except when the input data is sorted
CSCE 2014 - Programming Foundations II

SUMMARY

Algorithm Best Case Average Case Worst Case

Selection Sort O(N2) O(N2) O(N2)

Basic Bubble Sort O(N2) O(N2) O(N2)

Bubble Sort O(N) O(N2) O(N2)

Insertion Sort O(N) O(N2) O(N2)

Merge Sort O(N logN) O(N logN) O(N logN)

Quicksort O(N logN) O(N logN) O(N2)

Counting Sort O(N+M) O(N+M) O(N+M)

Radix Sort O(N*D) O(N*D) O(N*D)

242

The non-comparison based algorithms can be faster than all

other sort algorithms, but they only work for limited data types
CSCE 2014 - Programming Foundations II

SUMMARY

Algorithm History

Selection Sort Unknown*

Basic Bubble Sort Unknown*

Bubble Sort Unknown*

Insertion Sort Unknown*

Merge Sort Invented 1945 by John von Neumann

Quicksort Invented 1960 by Tony Hoare

Counting Sort Invented 1954 by Harold Seward

Radix Sort Invented 1887 by Herman Hollerith

243

* Because no one wants to take credit for O(N2) sort algorithms

CSCE 2014 - Programming Foundations II

	Slide 1: Sorting algorithms
	Slide 2: OVERVIEW
	Slide 3: overview
	Slide 4: OVERVIEW
	Slide 5: OVERVIEW
	Slide 6: OVERVIEW
	Slide 7: OVERVIEW
	Slide 8: OVERVIEW
	Slide 9: Sorting algorithms
	Slide 10: Algorithm analysis
	Slide 11: Algorithm analysis
	Slide 12: Algorithm analysis
	Slide 13: Algorithm analysis
	Slide 14: Algorithm analysis
	Slide 15: Algorithm analysis
	Slide 16: Algorithm analysis
	Slide 17: Algorithm analysis
	Slide 18: Algorithm analysis
	Slide 19: Sorting algorithms
	Slide 20: Selection sort
	Slide 21: Selection sort
	Slide 22: Selection sort
	Slide 23: Selection sort
	Slide 24: Selection sort
	Slide 25: Selection sort
	Slide 26: Selection sort
	Slide 27: Selection sort
	Slide 28: Selection sort
	Slide 29: Selection sort
	Slide 30: Selection sort
	Slide 31: Selection sort
	Slide 32: Selection sort
	Slide 33: Selection sort
	Slide 34: Selection sort
	Slide 35: Sorting algorithms
	Slide 36: Bubble sort
	Slide 37: Bubble sort
	Slide 38: Bubble sort
	Slide 39: Bubble sort
	Slide 40: Bubble sort
	Slide 41: Bubble sort
	Slide 42: Bubble sort
	Slide 43: Bubble sort
	Slide 44: Bubble sort
	Slide 45: Bubble sort
	Slide 46: Bubble sort
	Slide 47: Bubble sort
	Slide 48: Sorting algorithms
	Slide 49: Insertion sort
	Slide 50: Insertion sort
	Slide 51: Insertion sort
	Slide 52: Insertion sort
	Slide 53: Insertion sort
	Slide 54: Insertion sort
	Slide 55: Insertion sort
	Slide 56: Insertion sort
	Slide 57: Insertion sort
	Slide 58: Insertion sort
	Slide 59: Insertion sort
	Slide 60: Insertion sort
	Slide 61: Insertion sort
	Slide 62: Insertion sort
	Slide 63: Insertion sort
	Slide 64: Insertion sort
	Slide 65: Insertion sort
	Slide 66: Insertion sort
	Slide 67: Insertion sort
	Slide 68: Insertion sort
	Slide 69: Insertion sort
	Slide 70: Insertion sort
	Slide 71: Insertion sort
	Slide 72: Insertion sort
	Slide 73: Insertion sort
	Slide 74: Insertion sort
	Slide 75: Insertion sort
	Slide 76: Insertion sort
	Slide 77: Insertion sort
	Slide 78: Insertion sort
	Slide 79: Insertion sort
	Slide 80: Insertion Sort
	Slide 81: Insertion Sort
	Slide 82: Insertion Sort
	Slide 83: Insertion Sort
	Slide 84: Insertion Sort
	Slide 85: Insertion Sort
	Slide 86: Insertion Sort
	Slide 87: Insertion Sort
	Slide 88: Insertion Sort
	Slide 89: Insertion Sort
	Slide 90: Insertion Sort
	Slide 91: Insertion Sort
	Slide 92: Insertion Sort
	Slide 93: Insertion Sort
	Slide 94: Insertion Sort
	Slide 95: Insertion Sort
	Slide 96: Insertion Sort
	Slide 97: Insertion Sort
	Slide 98: Insertion Sort
	Slide 99: Insertion Sort
	Slide 100: Insertion Sort
	Slide 101: Insertion Sort
	Slide 102: Insertion Sort
	Slide 103: Sorting algorithms
	Slide 104: Merge sort
	Slide 105: Merge sort
	Slide 106: Merge sort
	Slide 107: Merge sort
	Slide 108: Merge sort
	Slide 109: Merge sort
	Slide 110: Merge sort
	Slide 111: Merge sort
	Slide 112: Merge sort
	Slide 113: Merge sort
	Slide 114: Merge sort
	Slide 115: Merge sort
	Slide 116: Merge sort
	Slide 117: Merge sort
	Slide 118: Merge sort
	Slide 119: Merge sort
	Slide 120: Merge sort
	Slide 121: Merge sort
	Slide 122: Merge sort
	Slide 123: Merge sort
	Slide 124: Merge sort
	Slide 125: Merge sort
	Slide 126: Merge sort
	Slide 127: Merge sort
	Slide 128: Merge sort
	Slide 129: Merge sort
	Slide 130: Merge sort
	Slide 131: Sorting algorithms
	Slide 132: Merge sort analysis
	Slide 133: Merge sort analysis
	Slide 134: Merge sort analysis
	Slide 135: Merge sort analysis
	Slide 136: Merge sort analysis
	Slide 137: Merge sort analysis
	Slide 138: Merge sort analysis
	Slide 139: Merge sort analysis
	Slide 140: Merge sort analysis
	Slide 141: Merge sort analysis
	Slide 142: Sorting algorithms
	Slide 143: Quicksort
	Slide 144: Quicksort
	Slide 145: Quicksort
	Slide 146: Quicksort
	Slide 147: Quicksort
	Slide 148: Quicksort
	Slide 149: Quicksort
	Slide 150: Quicksort
	Slide 151: Quicksort
	Slide 152: Quicksort
	Slide 153: Quicksort
	Slide 154: Quicksort
	Slide 155: Quicksort
	Slide 156: Quicksort
	Slide 157: Quicksort
	Slide 158: Quicksort
	Slide 159: quicksort
	Slide 160: quicksort
	Slide 161: quicksort
	Slide 162: quicksort
	Slide 163: quicksort
	Slide 164: quicksort
	Slide 165: quicksort
	Slide 166: quicksort
	Slide 167: Sorting algorithms
	Slide 168: Quicksort analysis
	Slide 169: Quicksort analysis
	Slide 170: Quicksort analysis
	Slide 171: Quicksort analysis
	Slide 172: Quicksort analysis
	Slide 173: Quicksort analysis
	Slide 174: Quicksort analysis
	Slide 175: Quicksort analysis
	Slide 176: Quicksort analysis
	Slide 177: quicksort
	Slide 178: Quicksort analysis
	Slide 179: Sorting algorithms
	Slide 180: Counting sort
	Slide 181: Counting sort
	Slide 182: Counting sort
	Slide 183: Counting sort
	Slide 184: Counting sort
	Slide 185: Counting sort
	Slide 186: Counting sort
	Slide 187: Counting sort
	Slide 188: Counting sort
	Slide 189: Counting sort
	Slide 190: Counting sort
	Slide 191: Counting sort
	Slide 192: Counting sort
	Slide 193: Counting sort
	Slide 194: Counting sort
	Slide 195: Counting sort
	Slide 196: Counting sort
	Slide 197: Counting sort
	Slide 198: Counting sort
	Slide 199: Counting sort
	Slide 200: Counting sort
	Slide 201: Counting sort
	Slide 202: Counting sort
	Slide 203: Counting sort
	Slide 204: Counting sort
	Slide 205: Counting sort
	Slide 206: Counting sort
	Slide 207: Counting sort
	Slide 208: Counting sort
	Slide 209: Counting sort
	Slide 210: Counting sort
	Slide 211: Counting sort
	Slide 212: Counting sort
	Slide 213: Counting sort
	Slide 214: Counting sort
	Slide 215: Sorting algorithms
	Slide 216: Radix sort
	Slide 217: Radix sort
	Slide 218: Radix sort
	Slide 219: Radix sort
	Slide 220: Radix sort
	Slide 221: Radix sort
	Slide 222: Radix sort
	Slide 223: Radix sort
	Slide 224: Radix sort
	Slide 225: Radix sort
	Slide 226: Radix sort
	Slide 227: Radix sort
	Slide 228: Radix sort
	Slide 229: Radix sort
	Slide 230: Radix sort
	Slide 231: Radix sort
	Slide 232: Radix sort
	Slide 233: Radix sort
	Slide 234: Radix sort
	Slide 235: Radix sort
	Slide 236: Sorting algorithms
	Slide 237: Summary
	Slide 238: Summary
	Slide 239: summary
	Slide 240: summary
	Slide 241: summary
	Slide 242: summary
	Slide 243: summary

